Search results for " Acetylation"
showing 10 items of 31 documents
P/CAF-mediated spermidine acetylation regulates histone acetyltransferase activity
2016
Histones and polyamines are important determinants of the chromatin structure. Histones form the core of nucleosome particles and their modification by acetylation of N-terminal tails is involved in chromatin structural changes and transcriptional regulation. Polyamines, including spermidine, are also targets of both cytoplasmic and nuclear acetylation, which in turn alters their affinity for DNA and nucleosomes. Previous studies report the interplay between polyamines metabolism and levels of histone acetylation, but the molecular basis of this effect is still unclear. In this work, we have analyzed the in vitro effect of spermidine on histone H3 acetylation catalyzed by P/CAF, a highly co…
Cyclic AMP-induced Chromatin Changes Support the NFATc-mediated Recruitment of GATA-3 to the Interleukin 5 Promoter
2008
Elevated intracellular cyclic AMP levels, which suppress the proliferation of naive T cells and type 1 T helper (Th1) cells are a property of T helper 2 (Th2) cells and regulatory T cells. While cyclic AMP signals interfere with the IL-2 promoter induction, they support the induction of Th2-type genes, in particular of il-5 gene. We show here that cyclic AMP signals support the generation of three inducible DNase I hypersensitive chromatin sites over the il-5 locus, including its promoter region. In addition, cyclic AMP signals enhance histone H3 acetylation at the IL-5 promoter and the concerted binding of GATA-3 and NFATc to the promoter. This is facilitated by direct protein-protein inte…
On the ubiquitous presence of histone acetyltransferase B in eukaryotes
1985
AbstractHistone acetyltransferase B activity has been found in pea (Pisun sativum) seedlings. The enzyme has been partially purified and it has been found that it is highly specific for H4. The results confirm that histone acetyltransferase B occurs in 3 eukaryotic kingdoms.
Plant Responses to Abiotic Stress Regulated by Histone Deacetylases
2017
In eukaryotic cells, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Recent studies indicate that HDACs play essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance regarding the plant HDACs and their functions in the regulation of abiotic stress responses. The role of HDACs in autophagy was also discussed.
'Up-regulation of histone acetylation induced by social defeat mediates the conditioned rewarding effects of cocaine
2016
Social defeat (SD) induces a long-lasting increase in the rewarding effects of psychostimulants measured using the self-administration and conditioned place procedures (CPP). However, little is known about the epigenetic changes induced by social stress and about their role in the increased response to the rewarding effects of psychostimulants. Considering that histone acetylation regulates transcriptional activity and contributes to drug-induced behavioral changes, we addressed the hypothesis that SD induces transcriptional changes by histone modifications associated with the acquisition of place conditioning. After a fourth defeat, H3(K9) acetylation was decreased in the hippocampus, whil…
Loss of the Sin3A/Rpd3 Histone De-Acetylase Complex Causes Polytene Chromosome Telomeric Fusions
2009
Histone deacetylase inhibitors induce in human hepatoma HepG2 cells acetylation of p53 and histones in correlation with apoptotic effects
2007
This report shows that histone deacetylase inhibitors (HDACIs) induced apoptosis in human hepatoma HepG2 cells in a dose- and time-dependent manner. Trichostatin A (TSA), ITF2357 and suberoylanilide hydroxamic acid (SAHA), which were very effective agents, caused apoptotic effects after a lag phase of 12-16 h. In order to elucidate the mechanism of HDACIs action in HepG2 cells we have studied the effects of TSA, ITF2357 and SAHA on acetylation of p53 and histones H2A, H2B, H3 and H4. It was observed that HDACIs rapidly induced acetylation of these proteins, being the effects clearly visible already at 30 min of treatment at the same doses which caused apoptosis. Analysis of the immunocomple…
Immunotherapy With Human Gamma Delta T Cells—Synergistic Potential of Epigenetic Drugs?
2018
Epigenetics has emerged as one of the fastest growing concepts, adding more than 45 new publications every day, spreading through various fields ( 1). Conrad Waddington coined the term “epigenetics” in 1942; however, a multitude of definitions has been endorsed by different researchers. In essence, Waddington’s definition of “epigenetics” and its redefinition by Holiday is at the heart of cellular function. Hence, it is obvious that epigenetic regulation plays a central role also in the specification, differentiation, and functional plasticity of T lymphocytes ( 2). T-cell fate decision in progenitor cells, functional CD4 T-cell plasticity, CD8 T-cell differentiation, but also T-cell memory…
DNA methylation and histone acetylation of rat methionine adenosyltransferase 1A and 2A genes is tissue-specific.
2000
Methionine adenosyltransferase (MAT) catalyzes the biosynthesis of S-adenosylmethionine (AdoMet). In mammals MAT activity derives from two separate genes which display a tissue-specific pattern of expression. While MAT1A is expressed only in the adult liver, MAT2A is expressed in non-hepatic tissues. The mechanisms behind the selective expression of these two genes are not fully understood. In the present report we have evaluated MAT1A and MAT2A methylation in liver and in other tissues, such as kidney, by methylation-sensitive restriction enzyme digestion of genomic DNA. Our data indicate that MAT1A is hypomethylated in liver and hypermethylated in non-expressing tissues. The opposite situ…
PCAF catalyzes tha acetylation of spermidine to N8-acetylspermidine and regulates its acetylating activity on histones
2011
Post-transcriptional histone acetylation is a well known process playing a crucial role in chromatin assembly and transcription. Here, we report that PCAF, a highly conserved histone acetyltransferase (HAT), can efficiently catalyze acetylation of spermidine to N8-acetylspermidine, at low concentration. Remarkably, we found that spermidine at higher concentration can also inhibit PCAF HAT activity directed against histone H3 in vitro, confirming the in vivo data referred by Eisenberg et al. on the spermidine induced inhibition of H3 acetylation. Surprisingly when we performed HAT assay experiments at low spermidine concentration we observed an activating effect on PCAF on H3 acetylation. Ou…